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INTRODUCTION



Setting the stage of the sampling problem 2

I
> Information about the system is the Boltzmann distribution: ox(x) = Z_e pU)

o 27% 73 %
(known up to normalization) 3%

- 3
> Although we will do ML, there is no extensive dataset to start with '§«

pick your preferred notation

> Averages with respect to p«(x) describe the thermodynamics (f(x)),. = E,,[f(x)]

-> too costly to compute by numerical integration ... /\
y p y g I I/_I\I T T T T 1
> Monte Carlo approximations consist in sampling 751 o p3R°.0
N .
. 1 ex: one particle in2d | %%D
with Xj ~ P« (X), N Z f(Xi) /\::o Ep*[f(x)] WithF;WO wells 25 °®
=1
4 S . ) Tl e |
> Overall goal: Sample from a target distribution to characterize 50 % -
the thermodynamics! L EE
| P+ (X) o e
> Disclaimer: No information about the dynamics! T R

- J




How to sample?

> Monte Carlo simulations were first proposed in the late 1940s in problems related to high-energy physics.

> From these early beginning, the premises of two very important algorithms were set
o Importance Sampling
o Markov Chain Monte Carlo

« All purpose framework: Metropolis-Hastings sampling  NB: Metropolis can also be used to look for a free
energy minima (cf Alisa’s talk)

« Some versions inspired by physical dynamics you might have heard about:
Langevin dynamics, Metropolis-Adjusted Langevin (MALA), Hamiltonian Monte Carlo (HMC)



Importance Sampling

—U(x)

1
> Context: p«(x) = with unkown Z

ze

> Task: Compute expectations E,[f(x)] :/ f(x)ps(x)dx
Q

> Method:

o Samples from proposal distribution X; ~ pp(X;) e.g. Gaussian, factorized, ...

: . e_U(Xi) X;
o Self-normalized weights w; = —5 /Pp(xi)

>oimg €YD /p,(xi)

1 N
o Compute Ep[f()] = 5> wif(x)
i=1

N
_ 1
o Asymptotically “unbiased” Eo[f(x)] = lim — > wif ()
=1

P (X)

Importance Sampling
L density function

Original density function |




Markov Chain Monte Carlo

> |dea: design transition kernel m(x:+1|x¢) such that chain Xo. X1, ..., Xt produces samples from p, for t large

> Important example:

Metropolis-Hastings sampler
Initialize: Xo

Iterate:

o Propose Xiy1 ~ pp(Xet1|Xt)

o Accept/Reject with prob.

P« (Xe11) op(Xe Xt 11)

acc(X¢+1/Xt) = min |1,
(Xer1lxt) s (Xt) Pp (X1 Xt )

o Ifrejectstay  x;11 = Xt

[e.g. Liu. Monte Carlo Strategies in Scientific Computing, 2004
Brooks et al. Hanabook of MCMC, 2011
C. P. Robert & W. Changye, Markov Chain Monte Carlo Methods, A survey with some frequent misunderstandings, 2020]



Why is sampling so hard?

> Shoot and reject/reweight algorithms: >
(e.g. Importance Sampling 1S)

Local exploration Markov chain Monte Carlo
(M C MC) (e.g. Metropolis Adjusted Langevin)

10.0

10.0 -
7.5 @ 7.5 :L
‘9 R\
5.0 o o ‘0\)\ \ 50 ’é (\‘5‘\0‘\ ‘c’)\\]\
< oo A\es o Wike o - o0 pet®’ a\e o |
SRR CAL R\ p+(x) T e et
© Qqo€ N Pprop (X 4o© d
*
-5.0 . = & g
-75 ’ T -7.5 -
Xij ~ pprop(X)
=10.0 T T T T T T T 1 -10.0 T T T T T T T -
-10.0 -75 -50 -25 0.0 25 5.0 75 10.0 -100 -75 -50 -25 00 25 50 75 10.0
x_0 x 0
L = ] TN t
E, [F00) = [ F(0p.00dx ~ 5 3 wlo)r(x) B [F00) = [ x)p.00dx ~ 572 03 Fx)
i=1 t=1 j=1

High variance!

High bias!



Enhanced sampling algorithms

> Temperature based:

o Couple the system to higher temperature copies of the same system driving the exploration
and transitions between metastable states.

o Example: Parallel Tempering (a.k.a. Replica Exchange) [Marinari & Parisi (1992), Geyer & Thomson (1995), Neal (1998) etc.]

o Challenges: Computationally costly, hard to tune (how high should the high temperature be?

how close in temperature should be the replicas?)
Dihedral angles

> Collective variable based: [Fuetal “Enhanced Sampling Based on Collective Variables.” 2023] ¢ P

o In cases where the metastability of interest can be described
by an identifiable small collection of variables.

Main chain of solvated polymer

o Example: Umbrella Sampling, Meta-dynamics, Adaptive Biasing Force

o Challenges: Identifying this collective random variables (typically few)




Ongoing revolution of generative modellig 8

> Ground-breaking progress has been made into generating high-quality data with neural nets
Architectures: GANs, VAE, Normalizing flows, Neural ODE, Score-based Diffusion models etc..

Famous models: Midjourney, ChatGPT etc..

> Deep latent generative models produce highly structured data points at negligible cost

z ~ pg(2)

> How can they be used for sampling?

Q1: Guarantees on the quality of the output?

Q2: Training without extensive data?

TQZQHQ

[e,

162

push-forward
x=Te(z) ~ pe(x) distribution

New dog picture for
each new base
variable! models and™®

[Song et al. ICLR leepfakes
2021] .

[Ali Boriji, Image and Vision Computing 2023]

generative
Task ‘ modelling | sampling

Input ‘ D= {x}Y, ‘ p.(x) ox e PYX)
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16>

1.1 Normalizing Flows (NF) ) <z>| |]| » 10

> Parametrized invertible map 75: Q= Q Q c R?

\

o Base distribution z ~ pg(2) Transport!

o ) 1 1 [Tabak & Vanden Eijnden Commun. Math. Sci. 2010,
o Push-forward distribution x = TQ(Z) ~ PO(X) = PB(TQ (X)) det |VXT9 | Papamakarios, et al JMLR 2021 (review)]

> How to construct an invertible parametrizable map? - The coupling layer trick
Dinh et al “Density Estimation Using Real Nvp.” ICLR 2027

—1
Inverse layer T, (v)
Affine coupling layer To(X)

X1 yi = S(x0) * x1 + tg(x2) x1 = 1 Block triangular Jacobian/: p
ViTe(x) = [59()(2) d/2 ]
0 la/2
X2 » Vo = X2 Yo = X2

o Can be generalized beyond affine maps, as long as y; = f,,(x1)and x1 = f,* (1) are available + easy Jacobians
e.g. Rational Quadratic Splines (RQS)

Durkan et al, “Neural Spline Flows.” NIPS 2019. Discrete data?
Autoregressive
> Compose to get expressive maps Te = Tg, © To; 0 T, 0 Tg, models!

Benigno et al. JMLR 2016.

> Crucial property: Easy to sample from and tractable likelihood! ‘Neural Autoregressive Distribution Estimation.”



To: Q2—Q 11

1.1 Normalizing Flows (NF) training - <Z>|9'1|'9-2|9_| o

LW

> Parametrized invertible map74: Q—Q QcR?

\

o Base distribution z ~ pg(2) Transport!
. . . 1 1 [Tabak & Vanden Eijnden Commun. Math. Sci. 2010,
o Push-forward distribution x = TQ(Z) ~ pO(X) = pB(Te (X)) det ’vxTe ‘ Papamakarios, et al JMLR 2021 (review)]

> Training is straightforward thanks to the tractable likelihood

> Maximum likelihood
o Given data samples xi i=1.---N

N
o Likelihood of parameter 8 € RP: £[6] = Hpg(X,') (independent samples)
i=1

N
o Negative log-likelihood loss: L[f] = — Z log pg(x;)  + (Stochastic) Gradient Descent!
i=1



1.2 Continuous normalizing flow, Neural ODE

> Parametrized invertible map 7,: Q—»Q QcR?
o Base distribution %o ~ pg(x0)

o Output defined through a parametrized dynamical process

dXt !
P Vo(Xz, t) X] = Xo —|—/ Vo(xz, t)dt
0

o Learnable velocity field ve(x.t): Q2 x[0,1] = Q
o Time plays an analogous role to depth in model defined by composition
o Typically uses adaptive integrators (non-constant time step)

> Computing the likelihood also requires integrating an ODE

o Instantaneous change of variable formula dlnp+;(xt) =V, vo(xe, 1)

Ordinary
Differential Equation 1 2

Residual Network ODE Network
5 i

~

IS
IS

=~
=
=

=5 0 5 =5 0 5
Input/Hidden/Output Input/Hidden/Output

= Inpnclx) = Inpa(o) = [ Vs v, 1)t

> Training? Still by maximum likelihood. What is hard about it?

o Computing derivative through integrals - adjoint method - github.com/rigichen/torchdiffeq

Chen et al. “Neural Ordinary Differential Equations.” NeurlPS 2019



1.2 Continuous normalizing flows with invariances 13

> Continuous NF are heavier than their discrete counterparts, so why use them?
o Possibly more expressive
o More importantly allows to incorporate symmetries

[> Idea is to constrain our learned distribution ps(x) to be invariant under a given group symmetry ¢

For g € G, pa(g[x]) = pa(x) e.g. rotations, translations,

ermutations
(easy to sample + P

> We still want the nice properties of transport-based models tractable likelihood)

o Consider an invariant based distribution pB(g[X]) = PB (X )

o Equivariant velocity filed vg(g[x], t) = g[ve(x, t)]

— [ Vivo(xe, t)dt

o Theresulting pa.t(xt) = pa(x0)e is invariant with respect to 9

> How to construct an equivariant velocity field? P Q22— R
o Option 1: Consider invariant function engineered by hand @a(g[x]) = ¢a(x) , take the gradient Vo(x) = Vo (x)

o Option 2: Rely on dedicated libraries relying on more fundamental principles, e.g. dithub.com/e3nn/e3nn
github.com/QUVA-Lab/e2cnn
(cf llia’s talk!)

Koéhler et al, “Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities” ICML 2020
Garcia Satorras et al, “E (n) equivariant normalizing flows”, Neurips 2021



1.3 Diffusion models 14

> Noising and denoising stochastic differential equations Denoising process
Instantaneous

Data noising process t=7T—71 distribution

dxr = —x:dT +V2dB; = x;—7 ~ pa(x) = N(0,lg) = dx¢ = xedt + 2V, Inpy(x¢)dt + V2dB,

Xt=0 "~ Pdata (XO) Xt=0 ~ PB (XO)

> The backward SDE samples (approximately) from the data distribution at time T Generative process !

But the so-called score function s(x, t) = VInp:(x)dt is unknown

> Score can be learned by denoising score matching (no need to compute the likelihood anymore)

T dt Conditional distribut

: : 5 onditional distribution: _ .
o Loss L(Q) = /0 N Z ||59(Xé) —Vin pt(XHXO)H Gaussian, easy 7 Xé ~ pt(XHXo)
=1

to evaluate and to sample

> Although, one can compute the likelihood using the ODE equivalent to the reverse SDE Vo (Xe, t)
Xt ~ pt(xt) N
dx d -~ N
dx; = x¢dt + 2V In p(x¢)dt + V2dB; & d_tt =Xt + VxInp:(Xt)  Approximated by % = Xt + Sp(x¢, t)

— 0o (xt) = pa(xg)e ) Vel t)dt

Sohl-Dickstein et al. “Deep Unsupervised Learning Using Nonequilibrium Thermodynamics.” ICML 2015,
Ho et al. “Denoising Diffusion Probabilistic Models.” NeurlPS 2020,
Song et al. “Score-Based Generative Modeling through Stochastic Differential Equations.” ICLR 2021



1.3 Diffusion models 15

> Advantages
o Can incorporate invariances
e.g. for rotation invariance: add to the invariant base distribution and an equivariant score of the
CNF the assumption of an isotropic noise.

Hoogeboom et al, "Equivariant Diffusion for Molecule Generation in 3D" ICML 2022

o Computationally lighter than Continuous Normalizing flows - in particular the loss is much
cheaper to evaluate

> Already quite impressive for generating molecular structure AlphaFold 3
RF diffusion DiffDock CE . ——
g alalalalalale \igand»& DIFFDOCK ranlfedposes& fo i":'wﬁmt—i@;m
protein confidence score
. P =T trans\a::::iodtz;fr:z::;et;rs\ons t=0 A\ / @ mmmmmmmmmmmmmm
e o ol Dol &
vs4 g' ‘ /)*\ ﬁ'&} > " ‘/;'J\E’/ \ /> ) Confidence
o, | S 8 68 0 =
AaBY. Diffusion PorF
2*‘@* module ~%
‘ (3 + 24 + 3 blocks) : b RN

Diffusion iterations

Corso et al, "DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking”, ICLR 2023

Watson et al. “De Novo Design of Protein Structure and Function with RFdiffusion.” Nature 2023
Abramson et al. “Accurate structure prediction of biomolecular interactions with AlphaFold 3”. Nature 2024.



1.4 Flow matching / stochastic interpolant models 16

> Build a bridge between two arbitrary distributions

01 (Xl) data distribution \ Interpolation function /t(XO, Xl) =X = txg + (1 — t)Xo

- 2
arbitrary base
Po(X0) distribution ~ ———> Instantaneous distribution Pt(X) = /dXO/dxl(S(X— /t(XO.Xl))PO(XO)pl(Xl)

de _

dt
1
with v = arg min/ dt Es, [||v(xt) — Gt/t(xo,xl)Hz}
0

> The distribution p:(x) is also generated by an ODE V(xe, t) ODE

Loss function for learning the velocity

> Close cousins to diffusion models, differences/advantages /
o Base distribution can be arbitrary //

'O(t) Vs t'me
o The process bridges the two distribution exactly between times 0 and 1 D1
https://github.com/malbergo/stochastic-interpolants

o But requires to choose an interpolant (how?)

Albergo et al, “Building Normalizing Flows with Stochastic Interpolants”, ICLR 2022

Lipman et al, “Flow Matching for Generative Modeling,” ICLR 2022
Albergo et al, “Stochastic Interpolants: A Unifying Framework for Flows and Diffusions”, JMLR 2024



Summary of part 1 17
> Transport based generative models allows to evaluate the likelihood of the generator

> Normalizing flows (NFs) rely on compositions of simple invertible layers

> Continuous normalizing flows (CNFs) parametrize the transport with a velocity field and an ODE
o They are computationally heavier than NFs but are typically more expressive.
o They can be made invariant to desired symmetries by considering:
* invariant base distributions
« equivariant velocity field.

> Diffusion models parametrize the transport with a Stochastic Differential Equation.
o They learn the score of a noising process to generate data through the backward denoising process.

o They are computationally lighter than continuous normalizing flows but can be made invariant equally.

> Flow matchings (a.k.a. stochastic interpolant) are close cousins with more flexibility for the base distributions
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Recall: main challenges in sampling with generative models

Q1: Guarantees on the quality of the output?

Q2: Training without extensive data?

[Ali Borji, Image and Vision Computing 2023]

generative

Task modelling | sampling

|
Input ‘ D = {x}Y, ‘ P (x) x e PYX)

19



Generative models for sampling: first ideas 20

Variational Inference with Normalizing Flows [CML 2015

Danilo Jimenez Rezende DANILOR @ GOOGLE.COM
Shakir Mohamed SHAKIR @ GOOGLE.COM

Google DeepMind, London

Boltzmann generators: Sampling
equilibrium states of many-body
systems with deep learning

Frank Noé&*t, Simon Olsson*, Jonas Kohler*, Hao Wu

Science 2019

Flow-based generative models for Markov chain Monte Carlo
in lattice field theory PRD 2019

M.S. Albergo,l’z’3 G. Kanwar ,4 and P. E. Shanahan*!

Solving Statistical Mechanics Using Variational Autoregressive Networks

PRL 2019
Dian Wu,! Lei Wang,2’3’4’* and Pan Zhangs’T



2.1 NF assisted sampling 21

Jumping ahead: suppose you can train a NF model ps(X) =~ p«(X), what do you gain?

> Importance sampling: > Markov Chain Monte Carlo: e.g. Metropolis Hastings
rely on adapated tractable proposal! rely on global proposal! Pprop(Xet1|Xe) = po(Xet1)
10.0 _I I T I I T T T 1 100 _l T T 1 T 1 1 T 1 _
7.5 %;u.o.%.f,.'; -'u 754 )
gm LX)
2.5 °° 25 i
:l 0.0 ‘_l 0.0 Fd
-2.5 B P(X) . "
da, W) =

5.0 % LB Po (X)

: o?o - -5.0 .
-7.5 Lt
~ X -7.5 1 L
Xj ~ pg(X) o (X)
-10.0 T T T T T T T 1

-100 -75 -50 -25 00 25 50 75 100 "10-0_10_0 75 50 25 00 25 50 75 1(;_6

x_0 x:0

Computing the weights and the accept-reject criteria requires the computation of the model likelihood!

Q1: GuaranteeWuaﬁty of the output? Q2: Training without extensive data?



2.2 Variational training of NFs for sampling 22

> A data-free learning objective: the (reverse) KuIIback-LeibIer divergence Dk (pgl|px)

D (psl|0+) Z/log peggpe dXN

0« (X)

PAVAN

I T T T T T T T 1
10.0 4 -

7.5 -

»

2.5+ -

0.0 .

x_1

-2.5 -

-5.0 o -

_7.5 - -

-10.0 T T T 1
-10.0 7 5 —5 0 —2 5 0 0 2.5 5.0 7.5 10.0
x_ 0

Weiss, P. (1907). L’hypothése du champ moléculaire et la propriété ferromagnétique.

Rezende et al. ICML 205, Wu et al. PRL 2019, Albergo et al PRD 2019

,OB(Z,') det |VZ,'T9|

zj ~ pg(2)

0+(To(zi))
e (X)

I
10.0 .
75 - -
5.0 - -

2.5 4 -

x_
I

0.0

2.5 -

=5.0 =

—7.5 B

-10.0 T T T T T T T 1-
-100 -75 -50 -25 0.0 25 50 75 10.0

Mode collapse!
Adhoc fixes in these first papers (annealing and adding data!)



2.3 Adaptive training and sampling: 23
Learning a non-local proposal while sampling

> Simultaneously training the flow and sampling by looping over 3 steps:

10,09

75 g 754 - |
o » . »
) 25 ! q - ::: ///// : q X 7:::
2.5 / E 5.0
5.0 ‘ b 754
754 1 -7.54 g
0 710'1)-10 75 -50 -25 00 25 5 y . _ S x_%
X0 X 0
X£'+1 ~ WIocaI(X£+1|XZ) o* = arg maxz log ,OG(XD pprop(XH—llXt) = p@(Xt—l-l)
it

> FlowMC full algorithm adressing the key questions

Q1: Guarantees Wality of the output? o . | el .
Q2: Training witwsive data? : Nl

-100 ———— T l0 75 80 25 00 25 50 75 100
00 75 50 25 00 25 50 75 100 e e T

[MG, Rotskoff, Vanden-Eijnden PNAS 2022 , Parno & Marzouk 2018 SIAM Journal of Uncertainty; Naesseth et al. Neurips 2020] No free lunch!



2.4 Computing free energy differences

—BUx(x)

e

> Once trained to approximate a target distribution px (x) = —z transport-based generative mod
can assist free energy estimation *

> ldea behind targeted free energy perturbation (TFEP): Jarzynski, C. “Targeted Free Energy Perturbation.”PRE 2002

1 1
F.=—=InZ, = —=1In [ e PY%Mqx

B B

Very much a la importance sampling

NB: If the model is not normalized, we obtain a free energy difference between the model and the target.

> Benett Acceptance Ratio (BAR) calculations are related and have typically smaller variance.

- 20

f
> Proof of concepts for computing the free energy differences with NFs : é sl 1"
L]

o between the target model and a simplified theory (used as a base) . il li§

24

els pg(x)

o between a crystal (used as a base) and the thermodynamical state at a given temperature . ° CEn
o of binding events (using a NF for bound structure and one for unbound)

o
)
£

o
o
I

o
o
M

o
o
2

Probability density

Wirnsberger et al.“Targeted Free Energy Estimation via Learned Mappings.” J. Chem. Phys. 2021.
Ding et al. “DeepBAR: A Fast and Exact Method for Binding Free Energy Computation”, J. Chem. Phys. 2021 w0
Jia et al, “Normalizing Constant Estimation with Gaussianized Bridge Sampling”, AABI 2019 Proceedings Physical énergies

o
o
3

620 640 660 680 700

Ding et al. “DeepBAR”, J

Probability density

o
&

o o o o Q
o >
S =

o
2

0.00°

—1100 -1080 -1060 -1040

Ua- (0 .
Model energies
. Chem. Phys. 2021



Summary for part 2

> The tractable likelihood of transport based models make it possible to insert them in Monte Carlo
approximation strategies guaranteeing the quality of the outputs.

> Training is performed either using a data-free variational objective (but be careful for mode collapse) or
a self-consistent loop of sampling and training.

> The trained model can also be employed to compute free energy differences.

25
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An example of the pipeline put into practice:
Sampling Agg hanoclusters at quantum accuracy

> Multiple isomers of silver nanoclusters are credibly stable at room temperature

> Transitions between metastable states cannot be observed through
molecular dynamics as they happen on long time scales

> We can use the flowMC pipeline to equilibrate an MCMC across isomers

flowMC workflow
short MD trajectory
initialize data f[ @ propagate MCMC }—\
([. (re)train models]\

[peNFc) %}

unsupervised

4

R

J

p
. update datasets
- a5

X1 ~ PGNF(')

compute energy ]

Projected samples

ab-flowMM w.o.

1 === Mixture proposal
1 e MCMC samples

1.201
1.15]
1.10-

1.051

~

5

' GPAW!

e

MCMC convergence

Coordination
number
: Radius

of gyration

- -

AZ Potential
L —r—
1\3 energy

\

50 100
Time (h)

Molina-Taborda, Cossio, Lopez-Acevedo, MG. “Active Learning of Boltzmann Samplers and Potential Energies with Quantum Mechanical Accuracy.” JCTC 2024



An example of the pipeline put into practice:
Sampling Agg hanoclusters at quantum accuracy

> Multiple isomers of silver nanoclusters are credibly stable at room temperature

> Transitions between metastable states cannot be observed through
molecular dynamics as they happen on long time scales

> We can also ease computational cost by adding a Machine Learning
Potential regressing the DFT predictions

flowMC workflow
shiamt MD ttegetctwry
initialize data /[. propagate MCMC ]h
,{. (re)train modelsl

[peNF(-) B

unsupervised |

ey By

supervise )
\ L

) x

propose
Kepr ~ P () ]

I{ compute energy ])1
_ P

. update datasets
| P9

J

~ -
1 === Mixture proposal ~——

Projected samples

ab-flowMM

e MCMC samples

5

' GPAW!

~ MCMC convergence
1.2 0 1% g Coordination
: number
. Radius
1 ; 1 5 4 of gyrf'ltlon
AR Potential
9‘\'._. energy
1.10 ¥ : _
ﬂ\\\h:'---- . without
1 . 05 . i -\\.' M‘\ [}
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Molina-Taborda, Cossio, Lopez-Acevedo, MG. “Active Learning of Boltzmann Samplers and Potential Energies with Quantum Mechanical Accuracy.” JCTC 2024
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State of affairs

> Proofs of concepts of using generative models for sampling physical systems

An incomplete selection

KIM REVIEW
https://kimreview.org

A recent review/opinion paper

Volume 2, Article 03, 2024

DO0I:10.25950/bfa99422
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Commentary by

Alessandro Coretti *

Perspective | Published: X . . § .
Faculty of Physics, University of Vienna, Austria

Advances in n Sebastian Falkner *
N Faculty of Physics, University of Vienna, Austria
mOtlvated by Jan Weinreich *

Faculty of Physics, University of Vienna, Austria
Christoph Dellago

Faculty of Physics, University of Vienna, Austria
0. Anatole von Lilienfeld®

Kyle Cranmer, Gurtej Kan

Nature Reviews Physics
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> Limits arise when it becomes difficult to obtain Pe(x) = p«(x) through training,
either because of the complexity of the landscape or because of the dimension

glass transition. We perfol

techniques developed in th on

flows against state-of-the-a

promising, showing a large Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning
performances comparable Frank Noé, et al., Science, 365:6457 (2019)

behind the swap Monte Ca

learning models in scientifie COMPUTIE TOT COMPIEX SYSTENIS; BT A0 POIITS T0 SONIE O 16S CUrTent

limitations and the need for further improvement.

[Del Debbio et al PRD 2021; Ciarella et al MLST 2023; Grenioux, Durmus, Moulines & MG ICML 2023]
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To overcome the curse of dimensionality,
combine learning with physics’ knowledge!
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Leveraging a low dimensional representation of metastability 33

> Sometimes the measure can decompose into hard/easy d.o.f.

0x(X) = pu(z, xT) = pu(2)ps(xF|2) 0+ (xH|2)  High-dimensional but

“easy” distributions
o -

- N
I\
o VAN

-10 -5 0 5 10 Multi-modal but

-10 0 10 -10 0 10 lower dimensional
X+ x4

Za

Z3

V4

> Remains the marginal on the variable(s) describing the metastability (a.k.a. Collective Variables)

0.(2) = / dxtp(z, xb) o eF@

> Intuition: focus efforts on low-dimensional problem (use ML!)

> Issues: the marginal is intractable so we cannot directly derive a sampling algorithm for it



Non-equilibrium path proposals & accept/reject 34

Super detailed-balance [Frenkel, PNAS 2001], Residence weight algorithm [Athénes PRE 2001], Non-
equilibirum candidate Monte Carlo [Nilmeier et al PNAS 2011], [Chen & Roux, JChemPhys 2015]

> Create a jump towards a newly proposed Z ~ py(2) ps(xF|2)
3 (zn. Xiy)
_ (Z — 2) - | Z ~ pg(2)
> Discrete N steps schedule for CV 20 =20+ 1 N
(e.g. linear interpolation) (v =2) 3
N J \ 2\
> Propose relaxation-steps for the rest recursively x1 ~ K(x*|z,, x= ;) / \
Relaxation kernel /:\
> Apply the accept/reject criteria X
o Path-proposal probability density 0¢(Z) H’C(XHZn. Xp_1) (z0.X5)

n=0

o Considering the same path backward, it as probability ps(2o) H K(xp—1|zn-1, %)

n=N
1

o Acceptance criteria sufficient for getting to the invariant distribution #x(x) = Z_ﬁe

p*(xn) pe(20) 11, K:(X#_1|an1er7_)]
p*(x0) po(zn) 1, K(xi|zn X7 1)

[Tamagnone, Laio, MG, "Coarse-Grained Molecular Dynamics with Normalizing Flows", JCTC 2024,
Schoénle, MG, Lelievre, Stoltz “Sampling metastable systems using collective variables and Jarzynski-Crooks paths”, 2405.18160]

—BU(x)

acc(Z, Xt|xo) = min [1,



How to learn the coarsed-grained proposal: adaptively!

Energy barrier in

> Atest system of a 9-bead polymer in solvent with two stabilized states: CV space
open closed 6d CV space
N — 50 A
~ 2 -
N 5
0 -
d
: : Inner loo
> The adaptive loop with steered stes p P N
Main |OOp Propose new CV value proposed previous CV
Steer CV
Local steps
. Generate full-atom path from steered CV
* previous state \ , full prop
Non-local

Steered update

Training steps

Metropolis Accept/Reject

[Tamagnone, Laio, MG, "Coarse-Grained Molecular Dynamics with Normalizing Flows", JCTC 2024]



Promising results for this hybrid ML-CV approach 36

d
> Produces converged free energies in CV space with 25% acceptance of non-local moves %
(35,000 steps in steered path dependending weakly on the energy barrier in CV)

CvMC

Free energy projection 1d Free energy projections 2d
12- —}— long MD
—f= CV-MC
~ 10- W
4]
<
>
o> 8 h l
= |
()
c i
(O] 6 J
)
()
B
4 1
> 7 kg T barri AN ]
closed /3 4 5 6 open s

: . 0l 2.0 255
% end-to-end distance d % 1

Tamagnone, Laio, MG, "Coarse-Grained Molecular Dynamics with Normalizing Flows", JCTC 2024]
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Perspective/Conclusion

> Progess in generative modelling suggests a road to powerfull machine learning enhanced samplers
which can speed up the simulation of equilibrium thermodynamics (or Bayesian posteriors)!

> These methods appear to be efficient “all-purpose” samplers for problems in moderate dimension.

> Reaching the level of training accuracy required for complex systems such as proteins is not trivial.

> Combining machine learning & physics will allow us to fully explore the potential of these
approaches.
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